Test HQE PERFORMANCE 2012

Opération PIXEL - Nanterre

Rapport final

22 Octobre 2012
Rédacteur : LRD/SMA
Référence : 120894-10-0007-V1.1
SOMMAIRE

1. PRESENTATION DU PROJET ET DES INTERVENANTS

1.1. Demarche environnementale du projet ... 4

1.2. Presentation du projet ... 5

2. LA DOCUMENTATION

2.1. Sources ... 8

2.2. Les Borderes d’evaluation .. 9

3. RESULTATS DU TEST

3.1. Resultats contributeur Produits de construction etequipements ... 11

3.1.1. VRD .. 12

3.1.2. Fondation et infrastructure .. 14

3.1.3. Superstructure et Maçonnerie .. 16

3.1.4. Couverture et étanchéité .. 18

3.1.5. Cloisonnement-doublage-menuiseries intérieures .. 20

3.1.6. Façades et menuiseries extérieures ... 22

3.1.7. Revêtements des sols, murs, plafonds, chape, peinture, faux plafonds 24

3.1.8. CVC ... 26

3.1.9. Installations sanitaires ... 28

3.1.10. Réseaux d’énergie électrique et de communication (courant fort et faible) 30

3.1.11. Sécurité des personnes et des bâtiments ... 32

3.1.12. Eclairage ... 34

3.1.13. Appareils élévateurs et autres équipements de transport intérieur 35

3.1.14. Equipement de production locale d’électricité .. 37

3.2. Resultats contributeur ENERGIE ... 38

3.2.1. Hypothèses ... 39

3.2.2. Résultats .. 40

3.2.3. Discussion ... 40

3.3. Resultats contributeur EAU .. 42
3.3.1. Hypothèses

3.3.2. Résultats

3.3.3. Discussion

3.4. RESULTATS CONTRIBUTUEUR CHANTIER

3.4.1. Hypothèses

3.4.1. Résultats

3.4.1. Discussion

3.5. RESULTATS CONTRIBUTUEUR DEPLACEMENT

4. CONCLUSION GENERALE
1. PRESENTATION DU PROJET ET DES INTERVENANTS

1.1. Démarche environnementale du projet

Le projet PIXEL est inscrit dans le cadre d’une certification HQE auprès de CERTIVEA avec le profil ci-après :

<table>
<thead>
<tr>
<th>CIBLE</th>
<th>B</th>
<th>P</th>
<th>TP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cible 1 - Relation du bâtiment avec son environnement immédiat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cible 2 - Choix intégré des produits, systèmes et procédés de construction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cible 3 - Chantier à faible impact environnemental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cible 4 - Gestion de l’énergie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cible 5 - Gestion de l’eau</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cible 6 - Gestion des déchets d’activités</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cible 7 - Maintenance - Pérennité des performances environnementales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cible 8 - Confort hygrométrique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cible 9 - Confort acoustique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cible 10 - Confort visuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cible 11 - Confort olfactif</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cible 12 - Qualité sanitaire des espaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cible 13 - Qualité sanitaire de l’air</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cible 14 - Qualité sanitaire de l’eau</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cette certification NF HQE Bâtiment tertiaire est accompagnée d’une demande de label BBC EFFINERGIE.
1.2. Présentation du projet

Extrait du fichier XLS généré à partir de l'interface ELODIE

<table>
<thead>
<tr>
<th>Projet:</th>
<th>PIXEL- HQE Performance 2012- 50ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Créé le:</td>
<td>20/06/2012 13:50</td>
</tr>
<tr>
<td>Nombre de bâtiments:</td>
<td>1</td>
</tr>
</tbody>
</table>

Description du projet: immeuble neuf constitué d'une partie à destination de bureaux (14000 m²) et d'une partie à destination de Pépinière d'entreprise

Période d'étude de référence: 50 ans

Description générale

<table>
<thead>
<tr>
<th>Typologie du bâtiment</th>
<th>Bâtiment de bureaux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bâtiment</td>
<td>Neuf</td>
</tr>
<tr>
<td>Nombre d'étages</td>
<td>R+5</td>
</tr>
<tr>
<td>Année de construction</td>
<td>entre 2012 et 2020</td>
</tr>
<tr>
<td>Année de réception</td>
<td>2013</td>
</tr>
</tbody>
</table>

Évaluation environnementale

<table>
<thead>
<tr>
<th>Phase d'évaluation du projet</th>
<th>Réalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>But de l'évaluation</td>
<td>0</td>
</tr>
<tr>
<td>Etat de vérification du projet</td>
<td>0</td>
</tr>
</tbody>
</table>
| Client de l'évaluation | ARCOBA : Mme MARAIS Sophie / 01 41 57 76 69
| | mètres, saisie
| | Formée à l'utilisation d'ELODIE (2012)
| | Mr RODE Luc / 01 41 57 87 66
| | AMO HQE de l'opération, chef de projet HQE performance.
| | Formé à l'utilisation d'ELODIE (2011) |

Méthode d'évaluation

Unités d'analyse

<table>
<thead>
<tr>
<th>Unité</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface hors œuvre nette</td>
<td>m²</td>
</tr>
<tr>
<td>Durée de vie programmée</td>
<td>années</td>
</tr>
<tr>
<td>SHAB</td>
<td>m²</td>
</tr>
<tr>
<td>Durée d'occupation par an</td>
<td>mois</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Nombre d'occupants</td>
<td></td>
</tr>
<tr>
<td>Surface de plancher</td>
<td>m²</td>
</tr>
<tr>
<td>SHON RT</td>
<td>m²</td>
</tr>
<tr>
<td>Surface d'emprise au sol</td>
<td>m²</td>
</tr>
</tbody>
</table>

Contexte

<table>
<thead>
<tr>
<th>Zone climatique</th>
<th>H1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adresse complète</td>
<td>12/14 rue du Port, Nanterre,</td>
</tr>
<tr>
<td>Détaillement</td>
<td>92</td>
</tr>
<tr>
<td>Altitude</td>
<td>mètres <= 400 mètres</td>
</tr>
<tr>
<td>Classe d'exposition au bruit</td>
<td>BR2 majoritairement</td>
</tr>
<tr>
<td>Zone sismique</td>
<td>Inconnue</td>
</tr>
</tbody>
</table>

Performance énergétique du bâtiment

<table>
<thead>
<tr>
<th>Le bâtiment modélisé a été conçu pour respecter les exigences</th>
<th>Label RT2005 - BBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur du Cep (au sens de la RT2005)</td>
<td>kWhep/m²SHON/an 78,06</td>
</tr>
</tbody>
</table>

Descriptions et commentaires

<table>
<thead>
<tr>
<th>Description du Bâtiment</th>
<th>Bâtiment à destination de : Bureaux pour 15 000 m² Pépinière d'entreprises pour 2 500 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nature de la structure du bâtiment (mode constructif)</td>
<td>Béton (poteaux/ poutres/ plancher préfabriqué ou précontraint, etc..)</td>
</tr>
<tr>
<td>Type de fondations</td>
<td>Pleux, longrines et radier</td>
</tr>
<tr>
<td>Surface de parking</td>
<td>5 585 m² (sur deux niveaux)</td>
</tr>
<tr>
<td>Nombre de places de parking</td>
<td>198</td>
</tr>
<tr>
<td>Type de parking</td>
<td>en surface</td>
</tr>
<tr>
<td>Hauteur sous plafond</td>
<td>2.68 sous faux plafond 3.45 de dalle à dalle</td>
</tr>
<tr>
<td>Les principaux matériaux employés (murs/isolation/vitragé, etc.)</td>
<td>Béton structure Menuiseries extérieures en double vitrage Argon. Parement de façade en brique</td>
</tr>
<tr>
<td>Les équipements installés (chauffage, ventilation, ECS, rafraîchissement, PLE)</td>
<td>Isolant en</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Production principale : Pompes à chaleur</td>
<td>---</td>
</tr>
<tr>
<td>Diffusion/ Emission : Poutres Froides</td>
<td>---</td>
</tr>
<tr>
<td>Ventilation mécanique double flux</td>
<td>---</td>
</tr>
<tr>
<td>Usage du bâtiment</td>
<td>Bureaux</td>
</tr>
<tr>
<td>Maître d'ouvrage</td>
<td>BNP PARIBAS IMMOBILIER D'ENTREPRISE</td>
</tr>
<tr>
<td>Maîtrise d'œuvre</td>
<td>BNP PARIBAS IMMOBILIER D'ENTREPRISE</td>
</tr>
<tr>
<td>FACE B et ATELIER 234 : ARCHITECTE</td>
<td></td>
</tr>
<tr>
<td>Etude thermique</td>
<td>SF2I BET CVC de l'opération</td>
</tr>
<tr>
<td>Description éléments architecturaux influençant le "compacité" du bâtiment</td>
<td></td>
</tr>
<tr>
<td>Type d'aménagement extérieur</td>
<td>Présence d'élément paysager dans les patios du bâtiment ainsi qu'en bordure de parcelle. Une voie de circulation ceinture le bâtiment afin de permettre une exploitation fonctionnelle du bâtiment sans gêne pour les occupants.</td>
</tr>
<tr>
<td>Exigences techniques et fonctionnelles appropriées</td>
<td>---</td>
</tr>
</tbody>
</table>
2. LA DOCUMENTATION

2.1. Sources

La base de données du logiciel Elodie du CSTB a été renseignée à partir des documents transmis, soit les DPGF suivants :
- lot 1 : terrassement et dépollution
- lot 2 : fondations spéciales-paroi moulée,
- lot 3 : gros œuvre,
- Lot4 : étanchéité,
- lot 5 : menuiseries extérieures,
- lot 6 : vêtue brique,
- lot 9 : porte tambour,
- lot 11 : cloisons doublages,
- lot 12 : menuiserie intérieures,
- lot 16 : plafonds suspendus,
- lot 17 : faux planchers,
- lot 18 : revêtements de murs et sols durs,
- lot20 : revêtements de sols souples,
- lot 21 : peinture,
- lot 22 : peinture parking,
- lot 23 : électricité courants forts,
- lot 24 : électricité courants faibles,
- lot 25 : GTB,
- lot 26 : SSI,
- lot 27 : CVC,
- lot 28 : plomberie,
- lot 30 : ascenseurs.

N’a pas été pris en compte les lots suivants :

- lot 10 : nettoyage de façade,
- lot 14 : clôtures,
- lot 15 : portes sectionnelles et portes de parking,
- lot 29 : équipement de cuisine,
- lot 32 : espaces verts,

Pour les éléments sortant des limites des DPGF nous avons utilisé les sources suivantes :
- BNP PI nous a fourni dans le cadre d'études et de retour d'expériences qu'ils ont effectué en collaboration avec le bureau d'étude BARBANEL les ratios de consommation de bâtiment tertiaire pour les postes énergie lié au bâti, énergie non lié au bâti, consommation d'eau RIE.
- Nous avons utilisé les éléments fournis par les entreprises en réponses à la charte chantier à faible nuisance pour conforter les hypothèses et ratios de production des déchets.
- Certains calculs effectués par nos soins dans le cadre de la démarche HQE de l’opération ont été repris afin de compléter les indicateurs demandés. C’est le cas notamment pour les consommations d’eau.

2.2. Les frontières d’évaluation

Le périmètre d’étude comprend tous les ouvrages de bâtiment et génie civil situés sur la parcelle.

Pour le test HQE Performance2012 : le découpage en lots à retenir pour la description du bâtiment est la suivante :
- 1. VRD
- 2. Fondations et infrastructure
- 3. Superstructure et maçonnerie
- 4. Couverture, étanchéité, charpente, zinguerie,
- 5. Cloisonnement, doublage, menuiseries intérieure,
- 6. Façades et menuiseries extérieures
- 7. Revêtements sols, murs plafonds, chape, peintures et produits de décoration,
- 8. CVC
- 9. Installations sanitaires,
- 10. Réseaux d’énergie électrique et de communication,
- 11. Sécurité des personnes et des bâtiments,
- 12. Eclairage,
- 13. Appareils élévateurs et autres équipements de transport intérieur,
- 14. Equipement de production local d’électricité.
Tableau récapitulatif des impacts environnementaux

<table>
<thead>
<tr>
<th>Consommation de ressources énergétiques</th>
<th>Total cycle de vie complet - tous modules confondus</th>
<th>Total cycle de vie complet - module Produits et Matériaux de construction</th>
<th>Total cycle de vie complet - module Energie</th>
<th>Total cycle de vie complet - module Eau</th>
<th>Total cycle de vie complet - module Chantier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>2,58E+04 13,05E+03 14,34% 2,13E+04 82,65% 0,14% 1,76E+04 2,87%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie renouvelable (kWh / m² SHON)</td>
<td>9,58E+03 4,43E+03 10,46% 7,30E+03 34,31% 0,13% 3,02E+03 3,10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie non renouvelable (kWh / m² SHON)</td>
<td>1,03E+04 5,01E+00 20,73% 1,74E+04 86,31% 0,13% 1,48E+04 14,59%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie primaire processée (kWh / m² SHON)</td>
<td>4,73E+03 1,28E+00 48,31% 1,75E+03 37,11% 0,00% 6,89E+02 14,59%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epuisement des ressources</td>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>2,58E+04 13,05E+03 14,34% 2,13E+04 82,65% 0,14% 1,76E+04 2,87%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consommation d'eau totale (L / m² SHON)</td>
<td>8,07E+04 1,66E+00 17,51% 1,94E+04 48,63% 0,21% 1,70E+04 1,35%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Déchets solides éliminés</td>
<td>Déchets dangereux (kg / m² SHON)</td>
<td>7,01E+00 2,00E+00 39,56% 4,00E+00 5,00% 0,00% 3,95E+00 1,56%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Déchets non dangereux (kg / m² SHON)</td>
<td>1,14E+03 4,00E+00 39,56% 7,00E+00 5,00% 0,00% 6,95E+00 1,56%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Déchets inertes (kg / m² SHON)</td>
<td>1,02E+03 4,00E+00 39,56% 7,00E+00 5,00% 0,00% 6,95E+00 1,56%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Déchets radioactifs (kg / m² SHON)</td>
<td>2,52E+03 3,86E+00 5,06% 1,30E+00 0,00% 0,00% 2,59E+00 0,26%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changement climatique</td>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>2,58E+04 13,05E+03 14,34% 2,13E+04 82,65% 0,14% 1,76E+04 2,87%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidification atmosphérique</td>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>2,58E+04 13,05E+03 14,34% 2,13E+04 82,65% 0,14% 1,76E+04 2,87%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollution de l'eau</td>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>2,58E+04 13,05E+03 14,34% 2,13E+04 82,65% 0,14% 1,76E+04 2,87%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formation d'ozone photochimique</td>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>2,58E+04 13,05E+03 14,34% 2,13E+04 82,65% 0,14% 1,76E+04 2,87%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destruction de la couche d'ozone stratosphérique</td>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>2,58E+04 13,05E+03 14,34% 2,13E+04 82,65% 0,14% 1,76E+04 2,87%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eutrophisation</td>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>2,58E+04 13,05E+03 14,34% 2,13E+04 82,65% 0,14% 1,76E+04 2,87%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota1 : tous les résultats sont extraits de la sortie Excel générée par l'outil ELODIE et reprennent les éléments de mise en forme automatique suivant :

Pour les données en pourcentage

- Contribution environnementale 10% < < 20%
- Contribution environnementale > 20%

Pour les données Valeurs

- Valeur minimale
- Valeur maximale
3.1. Résultats contributeur Produits de construction et équipements

14. Equipement de production locale d'électricité
13. Appareils élévateurs et autres équipements de transport intérieur
12. Eclairage
11. Sécurité des personnes et des bâtiments
10. Réseaux d'énergie électrique et de communication (cours fort et courant faible)
9. Installations sanitaires
8. CVC (Chauffage – Ventilation – Refroidissement - eau chaude sanitaire)
7. Revêtements des sols, murs et plafonds - Chape - Peintures - Produits de décoration
6. Façades et menuiseries extérieures
5. Cloisonnement - Doublage - Plafonds suspendus - Menuiseries intérieures
4. Couverture – Etanchéité - Charpente - Zinguerie
3. Superstructure - Maçonnerie
2. Fondations et infrastructure
1. VRD (Voirie et Réseaux Divers)
3.1.1. VRD

3.1.1.1 Hypothèses

Pour le lot VRD, 35 éléments ont été renseignés dans la base de données Elodie, seul 5 produits ont pu être complétés par une fiche INIES et quelques autres par une fiche Elodie CSTB.

Nous nous sommes astreints dans ces premières saisies à inscrire tous les composants, y compris ceux ne disposant pas de FDES ou de fiche ELODIE. Ainsi, à peine 50% des produits identifiés pour le lot VRD ont pu être entièrement renseignés.

Il est à noter que concernant les canalisations et les fourreaux, il n’a pas été tenu compte des diamètres nominaux des différentes catégories de produits utilisés sur le site, seul le critère de la longueur des produits est prise en compte. Nous avons saisis dans ce lot (bien que non liés à une FDES) tous les éléments de voirie y compris les revêtements intermédiaires liés à la réalisation de la voie de circulation durant le chantier.

3.1.1.2 Résultats

<table>
<thead>
<tr>
<th>PIXEL (Nanterre Extension)</th>
<th>Module Composant</th>
<th>Valeurs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Consommation de ressources énergétiques</td>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>3,72E+03</td>
</tr>
<tr>
<td></td>
<td>Energie renouvelable (kWh / m² SHON)</td>
<td>2,64E+02</td>
<td>1,36E+00</td>
</tr>
<tr>
<td></td>
<td>Energie non renouvelable (kWh / m² SHON)</td>
<td>2,49E+02</td>
<td>4,38E+01</td>
</tr>
<tr>
<td></td>
<td>Energie primaire procédé (kWh / m² SHON)</td>
<td>2,27E+03</td>
<td>3,65E+01</td>
</tr>
<tr>
<td></td>
<td>Épuisement des ressources (kg équivalent Antimoine / m²)</td>
<td>3,97E+00</td>
<td>7,39E-02</td>
</tr>
<tr>
<td></td>
<td>Consommation d'eau totale (L / m² SHON)</td>
<td>1,59E+04</td>
<td>1,14E+02</td>
</tr>
<tr>
<td></td>
<td>Déchets dangereux (kg / m² SHON)</td>
<td>2,88E+02</td>
<td>3,98E-03</td>
</tr>
<tr>
<td></td>
<td>Déchets non dangereux (kg / m² SHON)</td>
<td>7,03E+02</td>
<td>2,49E-01</td>
</tr>
<tr>
<td></td>
<td>Déchets inertes (kg / m² SHON)</td>
<td>3,47E+02</td>
<td>1,62E+01</td>
</tr>
<tr>
<td></td>
<td>Déchets radioactifs (kg / m² SHON)</td>
<td>5,52E+02</td>
<td>6,18E-04</td>
</tr>
<tr>
<td></td>
<td>Changement climatique (kg équivalent CO2 / m² SHON)</td>
<td>9,30E+02</td>
<td>8,11E-00</td>
</tr>
<tr>
<td></td>
<td>Acidification atmosphérique (kg équivalent SO2 / m² SHON)</td>
<td>3,48E+00</td>
<td>3,81E-02</td>
</tr>
<tr>
<td></td>
<td>Pollution de l'air (m3 / m² SHON)</td>
<td>2,25E+06</td>
<td>2,32E+03</td>
</tr>
<tr>
<td></td>
<td>Pollution de l'eau (m3 / m² SHON)</td>
<td>3,22E+04</td>
<td>3,59E+02</td>
</tr>
<tr>
<td></td>
<td>Formation d'ozone photochimique (kg équivalent éthylène / m² SHON)</td>
<td>4,90E+01</td>
<td>3,15E-04</td>
</tr>
<tr>
<td></td>
<td>Destruction de la couche d'ozone stratosphérique (kg équivalent CFC R11 / m² SHON)</td>
<td>3,75E+02</td>
<td>2,12E-07</td>
</tr>
<tr>
<td></td>
<td>Eutrophisation (kg équivalent PO4(3-) / m² SHON)</td>
<td>3,06E+00</td>
<td>3,71E-02</td>
</tr>
</tbody>
</table>
3.1.1.3 Discussion

Nous avons tenté sur le lot VRD d’être exhaustif dans la saisie des composants afin d’avoir une vision globale du lot et de son impact. Cependant outre une saisie astreignante, la recherche de fiche FDES « inexistante » ne nous a pas permis d’associer à peine 50% des éléments à un impact environnemental.

Il reste à mon sens dans les éléments non saisis des postes qui peuvent être impactant tel les revêtements bitumineux.
3.1.2. Fondation et infrastructure

3.1.2.1 Hypothèses

Pour le lot concernant les fondations et l’infrastructure, 12 éléments ont été renseignés dans la base de données Elodie, seul 7 produits ont pu être complétés par une fiche INIES (soit 58% des données) et 2 par une fiche Elodie CSTB.

Les éléments majoritaires ont été saisis tel que longrines, poteaux, poutres et dalles. Cependant des éléments importants n’ont pas été associés à un impact environnemental tel le radier et parois moulées (pas de fiche associée) ou encore les voiles pour lesquels la FDES associée serait *mur en béton extérieur de 16 cm d’épaisseur C25/30 XF1 CEM II/A*. Cependant concernant les voiles, nous avions des données en ml ou m3 de béton la FDES demandant des m² ; ne souhaitant pas ajouter de l’approximation à l’incertitude nous n’avons pas renseigné ce composant qui du coup ne rentre pas dans le calcul de l’impact du lot mais apparaît tout de même dans la documentation.

Les couches de bétons de propreté n’ont pas été saisies.
3.1.2.2 Résultats

<table>
<thead>
<tr>
<th>Impacts environnementaux</th>
<th>Unités</th>
<th>Module Composant</th>
<th>Valeurs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energie primaire totale</td>
<td>(kWh / m² SHON)</td>
<td>3.72E+03</td>
<td>1.14E+03</td>
<td>30.56%</td>
</tr>
<tr>
<td>Energie renouvelable</td>
<td>(kWh / m² SHON)</td>
<td>2.54E+02</td>
<td>5.58E+01</td>
<td>21.01%</td>
</tr>
<tr>
<td>Energie non renouvelable</td>
<td>(kWh / m² SHON)</td>
<td>2.49E+03</td>
<td>1.10E+03</td>
<td>44.29%</td>
</tr>
<tr>
<td>Energie primaire procédé</td>
<td>(kWh / m² SHON)</td>
<td>2.27E+03</td>
<td>1.13E+03</td>
<td>49.56%</td>
</tr>
<tr>
<td>Epuisement des ressources</td>
<td>(kg équivalent Antimoine / m²)</td>
<td>3.97E+00</td>
<td>1.94E+00</td>
<td>49.36%</td>
</tr>
<tr>
<td>Consommation d'eau totale</td>
<td>(L / m² SHON)</td>
<td>1.59E+04</td>
<td>9.95E+03</td>
<td>44.02%</td>
</tr>
<tr>
<td>Déchets dangereux</td>
<td>(kg / m² SHON)</td>
<td>2.88E+00</td>
<td>1.18E+01</td>
<td>4.11%</td>
</tr>
<tr>
<td>Déchets non dangereux</td>
<td>(kg / m² SHON)</td>
<td>7.03E+02</td>
<td>2.89E+03</td>
<td>80.16%</td>
</tr>
<tr>
<td>Déchets inertes</td>
<td>(kg / m² SHON)</td>
<td>3.47E+03</td>
<td>2.93E+03</td>
<td>84.50%</td>
</tr>
<tr>
<td>Déchets radioactifs</td>
<td>(kg / m² SHON)</td>
<td>5.52E-02</td>
<td>2.65E-02</td>
<td>48.12%</td>
</tr>
<tr>
<td>Changement climatique</td>
<td>(kg équivalent CO2 / m² SHON)</td>
<td>9.30E+02</td>
<td>1.18E+02</td>
<td>12.11%</td>
</tr>
<tr>
<td>Acidification atmosphérique</td>
<td>(kg équivalent SO2 / m² SHON)</td>
<td>3.49E+02</td>
<td>1.12E+00</td>
<td>71.01%</td>
</tr>
<tr>
<td>Pollution de l'air</td>
<td>(m3 / m² SHON)</td>
<td>2.26E+06</td>
<td>5.72E+04</td>
<td>2.54%</td>
</tr>
<tr>
<td>Formation d'ozone photochimique</td>
<td>(kg équivalent éthylène / m² SHON)</td>
<td>4.90E+01</td>
<td>3.93E+01</td>
<td>80.01%</td>
</tr>
<tr>
<td>Destruction de la couche d'ozone stratosphérique</td>
<td>(kg équivalent CFC R11 / m² SHON)</td>
<td>3.75E-02</td>
<td>1.68E-05</td>
<td>0.04%</td>
</tr>
<tr>
<td>Eutrophisation</td>
<td>(kg équivalent PO4(3-) / m² SHON)</td>
<td>3.06E+00</td>
<td>2.65E-01</td>
<td>8.65%</td>
</tr>
</tbody>
</table>

3.1.2.3 Discussion

Comme l’on pouvait s’y attendre la structure est un des éléments majoritaires, 30% de la consommation d’énergie primaire totale, des impacts environnementaux pour la partie composant.

Dans le détail, les pieux qui ont été regroupés en une seule ligne représentent l’élément le plus impactant de la famille saisie.

Deux bémols à cette analyse sommes toutes un peu rapide:

- L’absence de données exhaustives et d’informations concernant l’impact environnemental des éléments techniques fausse en partie les résultats. Le poids de 30% est-il représentatif de la part réelle des fondations dans le bâtiment
- En l’absence de données sur le radier, et les parois moulées les pieux sont les éléments les plus impactant.
3.1.3. Superstructure et Maçonnerie

3.1.3.1 Hypothèses

Pour le lot concernant la superstructure et la maçonnerie, 17 éléments ont été renseignés dans la base de données Elodie, seul 9 produits ont pu être complétés par une fiche INIES. Ont été pris en compte les plancher, poteaux, poutres murs maçonnés.

Il est à noter pour les poteaux, afin de prendre en compte une donnée en ml l'association des données à la FDES *Poteau en béton pour logement collectif C25 XF1 ciment classique CEM II/A de dimension 40cm*40 cm*.

Nous avons saisis dans cette partie l'isolation en sous face de dalle qui est de type FIBRALITH, cela n'a pour ainsi dire pas d'impact dans la mesure où il n'existe pas de FDES pour ce produit.

De même que pour les voiles d’infra, nous avons saisis les voiles de super, mais sans les associés a des valeurs d’impact environnemental.

Les valeurs (quantitatives) des dalles alvéolées précontraintes, prédalles et poutres précontraintes ont été confortées par les données de chantier issu de l’entreprise de GO.

Les couches de bétons de propreté n’ont pas été saisies.
3.1.3.2 Résultats

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation de ressources énergétiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie primaire totale</td>
<td>kWh / m² SHON</td>
<td>3.72E+03</td>
<td>2.60E+02</td>
<td>6.99%</td>
</tr>
<tr>
<td>Energie renouvelable</td>
<td>kWh / m² SHON</td>
<td>2.54E+02</td>
<td>1.85E+01</td>
<td>7.28%</td>
</tr>
<tr>
<td>Energie non renouvelable</td>
<td>kWh / m² SHON</td>
<td>2.49E+03</td>
<td>2.41E+02</td>
<td>9.70%</td>
</tr>
<tr>
<td>Energie primaire procédé</td>
<td>kWh / m² SHON</td>
<td>2.27E+03</td>
<td>2.50E+02</td>
<td>11.01%</td>
</tr>
<tr>
<td>Épuisement des ressources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent Antimoine / m²)</td>
<td></td>
<td>3.97E+00</td>
<td>3.26E-01</td>
<td>8.21%</td>
</tr>
<tr>
<td>Consommation d'eau totale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L / m² SHON)</td>
<td></td>
<td>1.59E+04</td>
<td>4.60E+02</td>
<td>2.90%</td>
</tr>
<tr>
<td>Déchets solides éliminés</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dégâts dangereux</td>
<td>kg / m² SHON</td>
<td>2.88E+00</td>
<td>2.64E+02</td>
<td>0.92%</td>
</tr>
<tr>
<td>Dégâts non dangereux</td>
<td>kg / m² SHON</td>
<td>7.03E+02</td>
<td>6.56E+01</td>
<td>0.09%</td>
</tr>
<tr>
<td>Dégâts inertes</td>
<td>kg / m² SHON</td>
<td>3.47E+03</td>
<td>5.06E+02</td>
<td>14.03%</td>
</tr>
<tr>
<td>Dégâts radioactifs</td>
<td>kg / m² SHON</td>
<td>5.52E+02</td>
<td>6.13E+03</td>
<td>11.11%</td>
</tr>
<tr>
<td>Changement climatique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent CO2 / m² SHON)</td>
<td></td>
<td>9.30E+02</td>
<td>9.02E+01</td>
<td>9.71%</td>
</tr>
<tr>
<td>Acidification atmosphérique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent SO2 / m² SHON)</td>
<td></td>
<td>3.48E+00</td>
<td>3.30E-01</td>
<td>9.49%</td>
</tr>
<tr>
<td>Pollution de l'air</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m3 / m² SHON)</td>
<td></td>
<td>2.25E+06</td>
<td>6.45E+03</td>
<td>0.29%</td>
</tr>
<tr>
<td>Pollution de l'eau</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m3 / m² SHON)</td>
<td></td>
<td>3.22E+04</td>
<td>3.31E+01</td>
<td>0.10%</td>
</tr>
<tr>
<td>Formation d'ozone photochimique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent éthylène / m² SHON)</td>
<td></td>
<td>4.90E+01</td>
<td>2.93E+02</td>
<td>0.06%</td>
</tr>
<tr>
<td>Détruit la couche d'ozone stratosphérique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent CFC R11 / m² SHON)</td>
<td></td>
<td>3.75E+02</td>
<td>2.93E+01</td>
<td>0.00%</td>
</tr>
<tr>
<td>Eutrophisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent PO4(3-) / m² SHON)</td>
<td></td>
<td>3.06E+00</td>
<td>5.49E-03</td>
<td>0.18%</td>
</tr>
</tbody>
</table>

3.1.3.3 Discussion

Les éléments de plancher constituent la part la plus impactante de cette famille de composant.

Il me paraît étonnant que la famille de produit Fondation et infrastructure « pèse » 30% de la totalité des consommations énergie primaire totale du projet et que la famille superstructure et maçonnerie ne « pèse » que ~7%. Du coup, on ne sait pas si nous avons surévalué l’impact des infrastructures par notre saisie ou bien si nous avons sous-évalué ou sous renseigné la famille superstructure.
3.1.4. Couverture et étanchéité

3.1.4.1 Hypothèses

Pour le lot couverture et étanchéité, 8 éléments ont été renseignés dans la base de données Elodie, seul 3 produits ont pu être complétés par une fiche INIES (soit 16,66% des données) et aucun élément n’a pu être renseigné par une fiche Elodie CSTB. Ainsi, seul 16,66 % des produits utilisés pour la construction de la couverture et l’étanchéité ont pu être entièrement renseignés.

Il est à noter que pour l’isolation thermique, nous avons renseigné avec une fiche INIES qui se rapproche le plus de notre produit, mais l’épaisseur n’est pas celle qui convient, 170 mm pour le produit utilisé et 80mm pour la fiche de référence.

L’étanchéité a été saisie en utilisant la FDES générique « complexe 5+15 » qui intègre dans la définition de l’unité fonctionnelle un écran pare vapeur ainsi qu’une protection gravillons.

Nous avons saisis sans y associer de FDES les gravillons de toiture, de même que la part écran pare vapeur. De même ont été saisis dans cette partie les platelages en bois qui seront mis en œuvre sur certaines terrasses du bâtiment.
3.1.4.2 Résultats

<table>
<thead>
<tr>
<th>PIXEL (Nanterre Extension)</th>
<th>Module Composant</th>
<th>Valeurs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impacts environnementaux</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consommation de ressources énergétiques</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>3.74E+03</td>
<td>6.60E+01</td>
<td>1.76%</td>
</tr>
<tr>
<td>Energie renouvelable (kWh / m² SHON)</td>
<td>2.54E+02</td>
<td>1.16E+01</td>
<td>4.58%</td>
</tr>
<tr>
<td>Energie non renouvelable (kWh / m² SHON)</td>
<td>2.51E+03</td>
<td>5.39E+01</td>
<td>2.15%</td>
</tr>
<tr>
<td>Energie primaire procédé (kWh / m² SHON)</td>
<td>2.26E+03</td>
<td>2.83E+01</td>
<td>1.24%</td>
</tr>
<tr>
<td>Épuisement des ressources</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epaisseur de gravillons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consommation d'eau totale (L / m² SHON)</td>
<td>1.39E+04</td>
<td>9.75E+01</td>
<td>0.61%</td>
</tr>
<tr>
<td>Déchets solides éliminés</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Déchets dangereux (kg / m² SHON)</td>
<td>2.66E+02</td>
<td>1.03E+01</td>
<td>0.61%</td>
</tr>
<tr>
<td>Déchets non dangereux (kg / m² SHON)</td>
<td>7.10E+02</td>
<td>1.43E+01</td>
<td>2.02%</td>
</tr>
<tr>
<td>Déchets inertes (kg / m² SHON)</td>
<td>3.48E+03</td>
<td>1.66E+01</td>
<td>0.48%</td>
</tr>
<tr>
<td>Déchets radioactifs (kg / m² SHON)</td>
<td>5.54E+02</td>
<td>4.05E+01</td>
<td>0.73%</td>
</tr>
<tr>
<td>Changement climatique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent CO2 / m² SHON)</td>
<td>9.31E+02</td>
<td>3.04E+01</td>
<td>0.33%</td>
</tr>
<tr>
<td>Acidification atmosphérique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent SO2 / m² SHON)</td>
<td>3.49E+00</td>
<td>3.51E-02</td>
<td>1.01%</td>
</tr>
<tr>
<td>Pollution de l'air (m³ / m² SHON)</td>
<td>2.25E+00</td>
<td>1.09E+03</td>
<td>0.05%</td>
</tr>
<tr>
<td>Pollution de l'eau (m³ / m² SHON)</td>
<td>3.22E+04</td>
<td>4.82E+00</td>
<td>0.01%</td>
</tr>
<tr>
<td>Formation d'ozone photochimique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent éthylène / m² SHON)</td>
<td>4.90E+01</td>
<td>4.62E-03</td>
<td>0.01%</td>
</tr>
<tr>
<td>Destruction de la couche d'ozone stratosphérique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent CFC R11 / m² SHON)</td>
<td>3.75E-02</td>
<td>4.16E-11</td>
<td>0.00%</td>
</tr>
<tr>
<td>Eutrophisation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent PO4(3-) / m² SHON)</td>
<td>3.06E+00</td>
<td>0.00E+00</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

3.1.4.3 Discussion

Dans le détail nous n’avons que peu d’élément saisi pour cette famille de composant, cependant il y a un fort risque de redondance des données. En effet le système 5+15 qui bénéficie d’une FDES et que nous avons décidé d’utiliser emploi dans la définition de son unité fonctionnelle un revêtement kraft ainsi qu’une épaisseur de gravillons. Cependant comme le montre les données issues du DPGF, il existe une divergence dans les m² de pare vapeur et les m² d’étanchéité.

La difficulté de l’exercice de saisie devient (et c’est le cas pour toutes les familles de composant) l’enchainement et les aller/retour entre DPGF et source des FDES afin de vérifier la cohérence des données. Sommes-nous en train de saisir deux fois la même quantité de produit ou bien sommes-nous entrain de minimiser ou maximiser l’impact de cette famille de produit par l’utilisation d’une FDES « générique ».
3.1.5. Cloisonnement–doublage-menuiseries intérieures

3.1.5.1 Hypothèses

Pour le lot, 35 éléments ont été renseignés dans la base de données Elodie, seul 14 produits ont pu être complétés par une fiche INIES (soit 43,75% des données) et aucun élément n’a pu être renseigné par une fiche Elodie CSTB. Ainsi, seul 43,75 % des produits utilisés pour la construction des cloisons et des menuiseries intérieures ont pu être entièrement renseignés.

Les données concernant les cloisons sont assez fournies et plutôt bien détaillée par niveau et par typologie d’espaces (carreau de plâtre ou plaque de BA 13, etc.), de même pour les plafonds dont les références, métrées et localisation sont très précises et pour lesquels les fournisseurs ont pour beaucoup déposés des FDES sur la base INIES. Pour les plafonds en plâtres nous avons utilisés la FDES « Plaque de Placoplatre SP13 ».

A noter pour toute la partie menuiserie intérieur une absence totale d’information.
3.1.5.2 Résultats

<table>
<thead>
<tr>
<th>Impacts environnementaux</th>
<th>Unités</th>
<th>Module Composant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation de ressources énergétiques</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie primaire totale</td>
<td>(kWh / m² SHON)</td>
<td>3.70E+03</td>
</tr>
<tr>
<td>Energie renouvelable</td>
<td>(kWh / m² SHON)</td>
<td>2.51E+02</td>
</tr>
<tr>
<td>Energie non renouvelable</td>
<td>(kWh / m² SHON)</td>
<td>2.47E+03</td>
</tr>
<tr>
<td>Energie primaire procédé</td>
<td>(kWh / m² SHON)</td>
<td>2.28E+03</td>
</tr>
<tr>
<td>Epuisement des ressources</td>
<td>(kg équivalent Antimoine / m²)</td>
<td>3.97E+00</td>
</tr>
<tr>
<td>Consommation d’eau totale</td>
<td>(L/m² SHON)</td>
<td>1.59E+04</td>
</tr>
<tr>
<td>Déchets solides éliminés</td>
<td>(kg/m² SHON)</td>
<td>2.80E+02</td>
</tr>
<tr>
<td>Déchets dangereux</td>
<td>(kg/m² SHON)</td>
<td>7.07E+02</td>
</tr>
<tr>
<td>Déchets non dangereux</td>
<td>(kg/m² SHON)</td>
<td>3.48E+03</td>
</tr>
<tr>
<td>Déchets inertes</td>
<td>(kg/m² SHON)</td>
<td>5.54E-02</td>
</tr>
<tr>
<td>Changement climatique</td>
<td>(kg équivalent CO2 / m² SHON)</td>
<td>9.27E+02</td>
</tr>
<tr>
<td>Acidification atmosphérique</td>
<td>(kg équivalent SO2 / m² SHON)</td>
<td>3.46E+00</td>
</tr>
<tr>
<td>Pollution de l’air</td>
<td>(m³/m² SHON)</td>
<td>2.25E+06</td>
</tr>
<tr>
<td>Pollution de l’eau</td>
<td>(m³/m² SHON)</td>
<td>3.22E+04</td>
</tr>
<tr>
<td>Formation d’ozone photochimique</td>
<td>(kg équivalent ethylène / m² SHON)</td>
<td>4.90E+01</td>
</tr>
<tr>
<td>Destruction de la couche d’ozone stratosphérique</td>
<td>(kg équivalent CFC R11 / m² SHON)</td>
<td>3.75E-02</td>
</tr>
<tr>
<td>Eutrophisation</td>
<td>(kg équivalent PO4(3-) / m² SHON)</td>
<td>1.64E+00</td>
</tr>
</tbody>
</table>

3.1.5.3 Discussion

Ce composant ne représente que 1,26% de l’impact global Energie primaire totale du projet ce qui est peu. L’on peut toutefois s’interroger sur la durée de vie typique saisie dans les FDES qui est majoritairement de 50ans. Selon ce principe l’impact des plafonds et cloisons est limité.

Dans la pratique les espaces de bureau sont liés à la durée des baux qui est en moyenne de 9ans et à la demande du marché qui avec une augmentation exigences énergétiques rend un immeuble obsolète au bout de 30 ans.

A noter aussi que le projet prévoit la livraison de plateau à aménager, n’entrent donc pas dans ce calcul les cloisons qui seront mises en place par le futur preneur.
3.1.6. Façades et menuiseries extérieures

3.1.6.1 Hypothèses

Pour le lot, 10 éléments ont été renseignés dans la base de données Elodie, seuls 2 produits ont pu être complétés par une fiche INIES (soit 20% des données) et 1 élément a pu être renseigné par une fiche Elodie CSTB (soit 10% des données). Ainsi, 30 % des produits utilisés pour la construction des façades et des menuiseries extérieures ont pu être entièrement renseignés.

Seul l’isolant de façade s’est révélé facile à saisir dans ELODIE.

Dans notre projet nous avons en façade soit des façades mur rideau, soit des façades avec une vêtue brique. Nous avons pour les éléments de menuiseries pris en compte la fiche Elodie fenêtre en aluminium y compris pour les façades mur rideau.
3.1.6.2 Résultats

<table>
<thead>
<tr>
<th>Impacts environnementaux</th>
<th>Unités</th>
<th>Module Composant</th>
<th>Valeurs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation de ressources énergétiques</td>
<td></td>
<td></td>
<td>11,83%</td>
<td></td>
</tr>
<tr>
<td>Energie primaire totale</td>
<td>kWh / m² SHON</td>
<td>3,72E+03</td>
<td>4,40E+02</td>
<td></td>
</tr>
<tr>
<td>Energie renouvelable</td>
<td>kWh / m² SHON</td>
<td>2,54E+02</td>
<td>5,36E+01</td>
<td></td>
</tr>
<tr>
<td>Energie non renouvelable</td>
<td>kWh / m² SHON</td>
<td>2,49E+03</td>
<td>3,86E+02</td>
<td></td>
</tr>
<tr>
<td>Energie primaire procédé</td>
<td>kWh / m² SHON</td>
<td>2,27E+03</td>
<td>4,38E+02</td>
<td></td>
</tr>
<tr>
<td>Épuisement des ressources</td>
<td>kg équivalent Antimoine / m²</td>
<td>3,97E+00</td>
<td>6,29E-01</td>
<td></td>
</tr>
<tr>
<td>Consommation d'eau totale</td>
<td>L / m² SHON</td>
<td>1,59E+04</td>
<td>6,79E+02</td>
<td></td>
</tr>
<tr>
<td>Déchets solides éliminés</td>
<td></td>
<td></td>
<td>9,44%</td>
<td></td>
</tr>
<tr>
<td>Déchets dangereux</td>
<td>kg / m² SHON</td>
<td>2,86E+00</td>
<td>5,39E-02</td>
<td></td>
</tr>
<tr>
<td>Déchets non dangereux</td>
<td>kg / m² SHON</td>
<td>7,03E-02</td>
<td>4,95E+01</td>
<td></td>
</tr>
<tr>
<td>Déchets inertes</td>
<td>kg / m² SHON</td>
<td>3,47E+03</td>
<td>3,44E+00</td>
<td></td>
</tr>
<tr>
<td>Déchets radioactifs</td>
<td>kg / m² SHON</td>
<td>5,52E-02</td>
<td>1,18E-02</td>
<td></td>
</tr>
<tr>
<td>Changement climatique</td>
<td>kg équivalent CO2 / m² SHON</td>
<td>9,30E+02</td>
<td>8,78E+01</td>
<td></td>
</tr>
<tr>
<td>Acidification atmosphérique</td>
<td>kg équivalent SO2 / m² SHON</td>
<td>3,48E+00</td>
<td>5,00E-01</td>
<td></td>
</tr>
<tr>
<td>Pollution de l'air</td>
<td>m³ / m² SHON</td>
<td>2,25E+06</td>
<td>1,40E+04</td>
<td></td>
</tr>
<tr>
<td>Pollution de l'eau</td>
<td>m³ / m² SHON</td>
<td>3,22E+04</td>
<td>1,08E+04</td>
<td></td>
</tr>
<tr>
<td>Formation d'ozone photochimique</td>
<td>kg équivalent éthylène / m² SHON</td>
<td>4,90E+01</td>
<td>1,39E-04</td>
<td></td>
</tr>
<tr>
<td>Destruction de la couche d'ozone stratosphérique</td>
<td>kg équivalent CFC R11 / m² SHON</td>
<td>3,75E-02</td>
<td>7,37E-06</td>
<td></td>
</tr>
<tr>
<td>Eutrophisation</td>
<td>kg équivalent PO4(3-) / m² SHON</td>
<td>3,06E+00</td>
<td>6,87E-02</td>
<td></td>
</tr>
</tbody>
</table>

Bien qu’une infime partie des éléments ait été saisie cette famille de composant pèse 11% consommation d’énergie primaire globale du bâtiment.

3.1.6.3 Discussion

Une des limites de notre résultat est la saisie de l’intégralité des menuiseries extérieures comme « châssis aluminium » alors que la moitié des façades de notre bâtiment est constitué de murs rideaux. De même, nous n’avons pas pris en compte dans notre calcul les protections solaires qui sont pour une partie des stores extérieurs à lame classique et pour partie des stores intérieurs avec une forme particulière.
3.1.7. Revêtements des sols, murs, plafonds, chape, peinture, faux plafonds

3.1.7.1 Hypothèses

Pour le lot, 26 éléments ont été renseignés dans la base de données Elodie, seul 11 produits ont pu être complétés par une fiche INIES (soit 42.3% des données) et 3 ont pu être renseigné par une fiche Elodie CSTB (soit 11.5% des données). Ainsi, 56.8 % des produits utilisés pour revêtement des sols et plafonds ont pu être entièrement renseignés.

La saisie est assez « rapide » sur les lots revêtements de sol, les références commerciales étant bien identifiées et les données INIES limitées à quelques fiches « générique » par typologie de revêtement. Par manque d’information dans les DPGF nous n’avons pas saisie de colles. Les données de ragréages ont par contre été intégrées encore une fois sur la base d’une fiche générique.

Nous avons également saisie dans cette partie les surfaces de faux-plancher sur la base des données DPGF associés à la fiche ELODIE « plancher technique ».

Concernant les peintures, nous avons utilisées les fiches INIES « générique » avec comme règle de saisie : si la peinture est définie tel que phase aqueuse mat ou brillante association à la FDES générique correspondante. Pour les autres peintures en l’absence de données nous ne les avons pas associés à une FDES.
3.1.6.2 Résultats

<table>
<thead>
<tr>
<th>PIXEL (Nanterre Extension)</th>
<th>Impacts environnementaux</th>
<th>Unités</th>
<th>Module Composant</th>
<th>7. Revêtements des sols, murs et plafonds - Chape - Peintures - Produits de décoration</th>
<th>7. Revêtements des sols, murs et plafonds - Chape - Peintures - Produits de décoration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation de ressources énergétiques</td>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>3,70E+03</td>
<td>5,26E+02</td>
<td>14,23%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energie renouvelable (kWh / m² SHON)</td>
<td>2,51E+02</td>
<td>9,45E+01</td>
<td>37,05%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energie non renouvelable (kWh / m² SHON)</td>
<td>2,47E+03</td>
<td>4,32E+02</td>
<td>77,49%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energie primaire procédé (kWh / m² SHON)</td>
<td>2,28E+03</td>
<td>3,68E+02</td>
<td>16,11%</td>
<td></td>
</tr>
<tr>
<td>Épuisement des ressources</td>
<td>Déchets dangereux (kg / m² SHON)</td>
<td>3,97E+00</td>
<td>8,92E-01</td>
<td>22,67%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Déchets non dangereux (kg / m² SHON)</td>
<td>3,48E+03</td>
<td>8,61E+00</td>
<td>0,16%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Déchets radioactifs (kg / m² SHON)</td>
<td>5,54E-02</td>
<td>6,74E-03</td>
<td>12,17%</td>
<td></td>
</tr>
<tr>
<td>Consommation d'eau totale</td>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>1,59E+04</td>
<td>1,58E+03</td>
<td>9,97%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energie renouvelable (kWh / m² SHON)</td>
<td>2,80E-00</td>
<td>5,70E-01</td>
<td>20,04%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energie non renouvelable (kWh / m² SHON)</td>
<td>7,07E-02</td>
<td>1,02E+02</td>
<td>14,44%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energie primaire procédé (kWh / m² SHON)</td>
<td>3,48E+03</td>
<td>8,61E+00</td>
<td>0,16%</td>
<td></td>
</tr>
<tr>
<td>Déchets solides éliminés</td>
<td>Déchets dangereux (kg / m² SHON)</td>
<td>9,27E+02</td>
<td>7,07E+01</td>
<td>7,63%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Déchets non dangereux (kg / m² SHON)</td>
<td>3,46E+00</td>
<td>6,37E-01</td>
<td>18,41%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Déchets inertes (kg / m² SHON)</td>
<td>2,25E+06</td>
<td>3,41E+00</td>
<td>1,53%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Déchets radioactifs (kg / m² SHON)</td>
<td>2,32E+04</td>
<td>4,92E+02</td>
<td>1,53%</td>
<td></td>
</tr>
<tr>
<td>Changement climatique</td>
<td>(kg équivalent CO2 / m² SHON)</td>
<td>4,90E+01</td>
<td>4,89E+01</td>
<td>99,90%</td>
<td></td>
</tr>
<tr>
<td>Acidification atmosphérique</td>
<td>(kg équivalent SO2 / m² SHON)</td>
<td>5,54E-02</td>
<td>6,74E-03</td>
<td>12,17%</td>
<td></td>
</tr>
<tr>
<td>Pollution de l'air</td>
<td>(m³ / m² SHON)</td>
<td>1,84E+00</td>
<td>4,91E-02</td>
<td>2,67%</td>
<td></td>
</tr>
<tr>
<td>Pollution de l'eau</td>
<td>(m³ / m² SHON)</td>
<td>3,75E-02</td>
<td>4,01E-07</td>
<td>0,00%</td>
<td></td>
</tr>
</tbody>
</table>
| Formation d'ozone
photochimique | (kg équivalent éthylène / m² SHON) | 3,59E-04 | 1,35E-04 | 0,00% |
| Destruction de la couche
de l'ozone stratosphérique | (kg équivalent CFC R11 / m² SHON) | 9,15E-02 | 9,15E-02 | 100,00% |
| Eutrophisation | (kg équivalent PO4(3-) / m² SHON) | 3,75E-02 | 4,01E-07 | 0,00% |

3.1.7.3 Discussion

Les éléments les plus impactant de cette famille de composant sont les moquettes et les faux planchers de type BUROBOX. Ce poids s’explique en partie par la durée de vie typique de ces éléments qui est de 10 ans pour la moquette et 15 ans pour le faux plancher et induit donc un renouvellement plus fréquent.

Pour la moquette cela est cohérent avec la durée de vie du produit et la durée des baux par contre cela semble étonnant pour ce qui est du faux plancher dont la durée de vie en œuvre dans un bâtiment est plutôt de 30 à 50 ans (par expérience dans les projet de rénovation, les dalles de faux planchers sont généralement conservées)
3.1.8. CVC

3.1.8.1 Hypothèses

Pour le lot CVC, 40 éléments ont été renseignés dans la base de données Elodie, aucun produit n'a pu être complété par une fiche INIES et 5 ont pu être renseignés par une fiche Elodie CSTB (soit 12,5% des données). Ainsi, seul 12,5 % des produits saisis dans le lot CVC ont pu être renseignés.

Nous avons dans la saisie été exhaustif pour les éléments liés aux gaines, flexibles, et grilles de soufflage bien qu'aucunes FDES ou PEP ou autres données ne soient disponibles.

Nous avons quand même fini par saisir pour quelques produits une FDES « se rapprochant » du produit décrit dans le DPGF. Ainsi les poutres statiques (HALTON) ont été saisis comme poutres climatiques (PREMAX) ; les pompes à chaleur air-air ont été associées à la fiche PAC réversible par air – Aqualis.

Les éléments associés au pilotage des installations CVC (télécommandes / multi-capteurs infrarouges) ont été saisis dans cette famille de composant.
3.1.8.2 Résultats

PIXEL (Nanterre Extension)

<table>
<thead>
<tr>
<th>Impacts environnementaux</th>
<th>Unités</th>
<th>Module Composant</th>
<th>Valeurs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation de ressources énergétiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie primaire totale</td>
<td>kWh / m² SHON</td>
<td></td>
<td>3,72E+03</td>
<td>4,77E+01</td>
</tr>
<tr>
<td>Energie renouvelable</td>
<td>kWh / m² SHON</td>
<td></td>
<td>2,54E+02</td>
<td>2,91E+00</td>
</tr>
<tr>
<td>Energie non renouvelable</td>
<td>kWh / m² SHON</td>
<td></td>
<td>2,49E+03</td>
<td>4,47E+01</td>
</tr>
<tr>
<td>Energie primaire procédé</td>
<td>kWh / m² SHON</td>
<td></td>
<td>2,27E+03</td>
<td></td>
</tr>
<tr>
<td>Épuisement des ressources</td>
<td>kg équivalent Antimoine / m²</td>
<td></td>
<td>3,97E+00</td>
<td></td>
</tr>
<tr>
<td>Consommation d'eau totale</td>
<td>L / m² SHON</td>
<td></td>
<td>1,59E+04</td>
<td>5,75E+03</td>
</tr>
<tr>
<td>Déchets solides éliminés</td>
<td>kg / m² SHON</td>
<td></td>
<td>2,66E+00</td>
<td>1,16E+01</td>
</tr>
<tr>
<td>Dératifs dangereux</td>
<td>kg / m² SHON</td>
<td></td>
<td>7,03E+02</td>
<td></td>
</tr>
<tr>
<td>Dératifs non dangereux</td>
<td>kg / m² SHON</td>
<td></td>
<td>3,47E+03</td>
<td></td>
</tr>
<tr>
<td>Dératifs inertes</td>
<td>kg / m² SHON</td>
<td></td>
<td>5,52E+02</td>
<td></td>
</tr>
<tr>
<td>Dératifs radioactifs</td>
<td>kg / m² SHON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changement climatique</td>
<td>kg équivalent CO2 / m² SHON</td>
<td></td>
<td>9,30E+02</td>
<td>5,64E+00</td>
</tr>
<tr>
<td>Acidification atmosphérique</td>
<td>kg équivalent SO2 / m² SHON</td>
<td></td>
<td>3,48E+00</td>
<td>3,75E-02</td>
</tr>
<tr>
<td>Pollution de l'air</td>
<td>m³ / m² SHON</td>
<td></td>
<td>2,25E+06</td>
<td></td>
</tr>
<tr>
<td>Pollution de l'eau</td>
<td>m³ / m² SHON</td>
<td></td>
<td>3,22E+04</td>
<td>3,11E+01</td>
</tr>
<tr>
<td>Formation d'ozone photochimique</td>
<td>kg équivalent éthylène / m² SHON</td>
<td></td>
<td>4,90E+01</td>
<td>9,57E-04</td>
</tr>
<tr>
<td>Destruction de la couche d'ozone stratosphérique</td>
<td>kg équivalent CFC R11 / m² SHON</td>
<td></td>
<td>3,75E-02</td>
<td>1,68E-04</td>
</tr>
<tr>
<td>Eutrophisation</td>
<td>kg équivalent PO4(3-) / m² SHON</td>
<td></td>
<td>3,06E+00</td>
<td>8,13E-03</td>
</tr>
</tbody>
</table>

3.1.8.3 Discussion

Que dire sinon encore une fois que nous avons tenté d’être exhaustif dans la saisie, et cela sans être récompensé. Ce type de saisie ne fait finalement que ressortir le manque de données associées. Et encore pour ce lot nous avons pris en compte des PEP ne correspondant pas exactement à nos produits.

Cette famille de produit ne « pèse » que 1.28% des consommations *énergie primaire totale* mais cela ne veut pas dire grand-chose...5 PEP ont été associés à des produits et aucune FDES ne correspond à des équipements techniques.
3.1.9. Installations sanitaires

3.1.9.1 Hypothèses

Pour le lot installations sanitaires, 35 éléments ont été renseignés dans la base de données Elodie, 3 produits ont pu être complétés par une fiche INIES (soit 8.6 % des données) et 1 a pu être renseigné par une fiche Elodie CSTB (soit 2.8% des données). Ainsi, seul 11% des produits saisis ont pu être entièrement renseignés.

Pour les plans de vasques en chênes, nous disposons que de la longueur du plan et pas la profondeur, ainsi la superficie de chêne n’a pas pu être renseignée.

Pour le réseau en tube PVC et en cuivre, toutes les longueurs ont été additionnées quelques soient les diamètres nominatifs des tubes, pour nous permettre de compléter le logiciel Elodie avec une fiche matière, dans le cas présent PVC et Cuivre.
3.1.9.2 Résultats

<table>
<thead>
<tr>
<th>PIXEL (Nanterre Extension)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation de ressources énergétiques</td>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>3,72E+03</td>
<td>2,82E+01</td>
<td>0,76%</td>
</tr>
<tr>
<td></td>
<td>Energie renouvelable (kWh / m² SHON)</td>
<td>2,54E+02</td>
<td>3,06E+00</td>
<td>1,21%</td>
</tr>
<tr>
<td></td>
<td>Energie non renouvelable (kWh / m² SHON)</td>
<td>2,49E+03</td>
<td>2,52E+01</td>
<td>1,01%</td>
</tr>
<tr>
<td></td>
<td>Energie primaire procédé (kWh / m² SHON)</td>
<td>2,27E+03</td>
<td>1,73E+01</td>
<td>0,76%</td>
</tr>
<tr>
<td>Epuisement des ressources</td>
<td>kg équivalent Antimoine / m²</td>
<td>3,97E+00</td>
<td>3,78E-02</td>
<td>0,95%</td>
</tr>
<tr>
<td>Consommation d'eau totale</td>
<td>L / m² SHON</td>
<td>1,99E+04</td>
<td>5,74E-01</td>
<td>0,36%</td>
</tr>
<tr>
<td>Déchets solides éliminés</td>
<td>Déchets dangereux (kg / m² SHON)</td>
<td>2,86E+00</td>
<td>2,49E-02</td>
<td>0,87%</td>
</tr>
<tr>
<td></td>
<td>Déchets non dangereux (kg / m² SHON)</td>
<td>7,03E+02</td>
<td>1,88E+00</td>
<td>0,27%</td>
</tr>
<tr>
<td></td>
<td>Déchets inertes (kg / m² SHON)</td>
<td>3,47E+03</td>
<td>3,05E+00</td>
<td>0,09%</td>
</tr>
<tr>
<td></td>
<td>Déchets radioactifs (kg / m² SHON)</td>
<td>5,52E-02</td>
<td>2,37E-04</td>
<td>0,43%</td>
</tr>
<tr>
<td>Changement climatique</td>
<td>kg équivalent CO2 / m² SHON</td>
<td>9,30E+02</td>
<td>4,32E+00</td>
<td>0,47%</td>
</tr>
<tr>
<td>Acidification atmosphérique</td>
<td>kg équivalent SO2 / m² SHON</td>
<td>3,48E+00</td>
<td>1,37E-02</td>
<td>0,39%</td>
</tr>
<tr>
<td>Pollution de l'air</td>
<td>m³ / m² SHON</td>
<td>2,25E+06</td>
<td>4,45E+02</td>
<td>0,02%</td>
</tr>
<tr>
<td>Pollution de l'eau</td>
<td>m³ / m² SHON</td>
<td>3,22E+04</td>
<td>1,34E+02</td>
<td>0,42%</td>
</tr>
<tr>
<td>Formation d'ozone photochimique</td>
<td>kg équivalent éthylène / m² SHON</td>
<td>4,80E+01</td>
<td>2,21E-04</td>
<td>0,00%</td>
</tr>
<tr>
<td>Destruction de la couche d'ozone stratosphérique</td>
<td>kg équivalent CFC R11 / m² SHON</td>
<td>3,75E-02</td>
<td>2,09E-07</td>
<td>0,00%</td>
</tr>
<tr>
<td>Eutrophisation</td>
<td>kg équivalent PO4(3-) / m² SHON</td>
<td>3,06E+00</td>
<td>4,53E-02</td>
<td>1,48%</td>
</tr>
</tbody>
</table>

3.1.9.3 Discussion

Nous avons pour ce lot été une nouvelle fois exhaustif dans la saisie, bien qu’au final nos efforts ne soient pas récompensé puisque seulement 4 FDES ou PEP ont été associés aux éléments saisis.

Le recherche est longue, et la disparité des données est parfois décourageante....ainsi nous avons agrégé les données de ml de tuyau pour les associer à une seule fiche sans tenir compte du diamètre du tuyau.

Il aurait sans doute fallu appliquer une règle de trois pour ramener en ml toute les canalisations au diamètre pris en compte dans les fiches. Cependant comment quantifier l’erreur faite sur les canalisations quant à peine 11% des éléments d’une famille de produit dispose d’une FDES.
3.1.10. Réseaux d’énergie électrique et de communication (courant fort et faible)

3.1.10.1 Hypothèses

Pour le lot CFO / CFA, 6 éléments ont été renseignés dans la base de données Elodie, aucun n’a pu être complété par une fiche INIES et 2 ont pu être renseignés par une fiche Elodie CSTB (soit 33,33% des données).

Deux des éléments saisis rappellent l’ensemble des équipements, dont par exemple tous les câbles qui n’ont pas été saisis individuellement dans le logiciel par manque de fiche de données/ ou excès de données.
3.1.10.2 Résultats

<table>
<thead>
<tr>
<th>Impacts environnementaux</th>
<th>Unités</th>
<th>Module Composant</th>
<th>Valeurs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energie primaire totale</td>
<td>(kWh / m² SHON)</td>
<td>3.72E+03</td>
<td>0.25%</td>
<td></td>
</tr>
<tr>
<td>Energie renouvelable</td>
<td>(kWh / m² SHON)</td>
<td>2.54E+02</td>
<td>0.13%</td>
<td></td>
</tr>
<tr>
<td>Energie non renouvelable</td>
<td>(kWh / m² SHON)</td>
<td>2.49E+03</td>
<td>0.36%</td>
<td></td>
</tr>
<tr>
<td>Energie primaire procédé</td>
<td>(kWh / m² SHON)</td>
<td>2.27E+03</td>
<td>0.41%</td>
<td></td>
</tr>
<tr>
<td>Épuisement des ressources</td>
<td>(kg équivalent Antimoine / m²)</td>
<td>3.97E+00</td>
<td>0.40%</td>
<td></td>
</tr>
<tr>
<td>Consommation d'eau totale</td>
<td>(L / m² SHON)</td>
<td>1.99E+04</td>
<td>0.14%</td>
<td></td>
</tr>
<tr>
<td>Déchets dangereux</td>
<td>(kg / m² SHON)</td>
<td>2.68E+03</td>
<td>0.32%</td>
<td></td>
</tr>
<tr>
<td>Déchets non dangereux</td>
<td>(kg / m² SHON)</td>
<td>7.03E+03</td>
<td>1.12%</td>
<td></td>
</tr>
<tr>
<td>Déchets inertes</td>
<td>(kg / m² SHON)</td>
<td>3.47E+03</td>
<td>0.09%</td>
<td></td>
</tr>
<tr>
<td>Déchets radioactifs</td>
<td>(kg / m² SHON)</td>
<td>5.52E+02</td>
<td>0.29%</td>
<td></td>
</tr>
<tr>
<td>Changement climatique</td>
<td>(kg équivalent CO₂ / m² SHON)</td>
<td>9.30E+02</td>
<td>0.20%</td>
<td></td>
</tr>
<tr>
<td>Acidification atmosphérique</td>
<td>(kg équivalent SO₂ / m² SHON)</td>
<td>3.48E+00</td>
<td>0.23%</td>
<td></td>
</tr>
<tr>
<td>Pollution de l'air</td>
<td>(m³ / m² SHON)</td>
<td>2.25E+06</td>
<td>0.03%</td>
<td></td>
</tr>
<tr>
<td>Pollution de l'eau</td>
<td>(m³ / m² SHON)</td>
<td>3.22E+04</td>
<td>0.39%</td>
<td></td>
</tr>
<tr>
<td>Formation d'oxyde photochimique</td>
<td>(kg équivalent éthylène / m² SHON)</td>
<td>4.90E+01</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Destruction de la couche d'oxyde stratosphérique</td>
<td>(kg équivalent CFC R11 / m² SHON)</td>
<td>3.75E+02</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Eutrophisation</td>
<td>(kg équivalent PO₄(3-) / m² SHON)</td>
<td>3.06E+00</td>
<td>0.09%</td>
<td></td>
</tr>
</tbody>
</table>

3.1.10.3 Discussion

Que dire...pas de FDES, des PEP absentes ou comme pour le cas des câbles électriques, profusion de fiche de toute sorte correspondant à tout diamètre, longueur, résistance que nous n'avons pas su exploiter du fait de l'absence d'information dans le DPGF.

Un poids relatif de la famille faible dont on ne peut que dire qu’il traduit le peu d’information a dispositon.
3.1.11. Sécurité des personnes et des bâtiments

3.1.11.1 Hypothèses

Pour le lot concernant la sécurité des personnes et des bâtiments seuls deux éléments ont été saisis.

LES BAES qui disposent d’une PEP dans la base ELODIE. En réalité il y a une multitude de PEP concernant les BAES dont la différence est peu compréhensible en lecture rapide, les extincteurs aussi ont été saisi (mais aucune fiche correspondante disponible) ;

Pour le reste, au regard de la liste des éléments transmis pour la sécurité, le logiciel Elodie ne comprenait pas les éléments de renseignements permettant de compléter la base de données.
3.1.11.2 Résultats

<table>
<thead>
<tr>
<th>Impacts environnementaux</th>
<th>Unités</th>
<th>Module Composant</th>
<th>Valeurs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation de ressources énergétiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>3.72E+03</td>
<td>6.17E+01</td>
<td>1.66%</td>
<td></td>
</tr>
<tr>
<td>Energie renouvelable (kWh / m² SHON)</td>
<td>2.54E+02</td>
<td>3.76E+00</td>
<td>1.48%</td>
<td></td>
</tr>
<tr>
<td>Energie non renouvelable (kWh / m² SHON)</td>
<td>2.49E+03</td>
<td>5.80E+01</td>
<td>2.33%</td>
<td></td>
</tr>
<tr>
<td>Energie primaire procédé (kWh / m² SHON)</td>
<td>2.27E+03</td>
<td></td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Epuisement des ressources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent Antimoine / m²)</td>
<td>3.97E+00</td>
<td></td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Consommation d’eau totale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L / m² SHON)</td>
<td>1.39E+04</td>
<td>5.04E+01</td>
<td>0.33%</td>
<td></td>
</tr>
<tr>
<td>Déchets solides éliminés</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Déchets dangereux (kg / m² SHON)</td>
<td>2.89E+00</td>
<td>4.74E+01</td>
<td>1.65%</td>
<td></td>
</tr>
<tr>
<td>Déchets non dangereux (kg / m² SHON)</td>
<td>7.03E+02</td>
<td></td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Déchets inertes (kg / m² SHON)</td>
<td>3.47E+03</td>
<td></td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Déchets radioactifs (kg / m² SHON)</td>
<td>5.52E+02</td>
<td></td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Changement climatique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent CO2 / m² SHON)</td>
<td>9.30E+02</td>
<td>3.31E+00</td>
<td>0.36%</td>
<td></td>
</tr>
<tr>
<td>Acidification atmosphérique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent SO2 / m² SHON)</td>
<td>3.48E+00</td>
<td>2.42E+00</td>
<td>2.37%</td>
<td></td>
</tr>
<tr>
<td>Pollution de l’air</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m³ / m² SHON)</td>
<td>2.25E+06</td>
<td>9.08E+05</td>
<td>40.40%</td>
<td></td>
</tr>
<tr>
<td>Pollution de l’eau</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m³ / m² SHON)</td>
<td>3.22E+04</td>
<td>7.97E+01</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Formation d’ozone photochimique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent éthylène / m² SHON)</td>
<td>4.90E+01</td>
<td>1.25E+03</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Destruction de la couche d’ozone stratosphérique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent CFC R11 / m² SHON)</td>
<td>3.75E+02</td>
<td>3.19E-07</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Eutrophisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kg équivalent PO4(3-) / m² SHON)</td>
<td>3.06E+00</td>
<td>6.08E-04</td>
<td>0.02%</td>
<td></td>
</tr>
</tbody>
</table>

3.1.11.3 Discussion

Pas ou peu d’information concernant les éléments à saisir dans cette famille de produit et à l’inverse quand nous nous sommes intéressés aux BAES une multitude de fiches dont les différences sont peu évidentes à discerner.
3.1.12. Eclairage

3.1.12.1 Hypothèses

Les bases de données sont vides ! Aussi nous n’avons saisie dans cette partie que les éléments « majoritaire » en quantité sans y associer de données d’impact.

3.1.12.2 Résultats

<table>
<thead>
<tr>
<th>PIXEL (Nanterre Extension)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impacts environnementaux</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Consommation de ressources énergétiques</td>
</tr>
<tr>
<td>Energie renouvelable (kWh / m² SHON)</td>
</tr>
<tr>
<td>Energie non renouvelable (kWh / m² SHON)</td>
</tr>
<tr>
<td>Energie primaire procédé (kWh / m² SHON)</td>
</tr>
<tr>
<td>Épuration des ressources</td>
</tr>
<tr>
<td>Consommation d'eau totale</td>
</tr>
<tr>
<td>Déchets solides éliminés</td>
</tr>
<tr>
<td>Déchets non dangereux (kg / m² SHON)</td>
</tr>
<tr>
<td>Déchets inertes (kg / m² SHON)</td>
</tr>
<tr>
<td>Déchets radioactifs (kg / m² SHON)</td>
</tr>
<tr>
<td>Changement climatique</td>
</tr>
<tr>
<td>Acidification atmosphérique</td>
</tr>
<tr>
<td>Pollution de l'air</td>
</tr>
<tr>
<td>Pollution de l'eau</td>
</tr>
<tr>
<td>Formation d'ozone photochimique</td>
</tr>
<tr>
<td>Déstruction de la couche d'ozone stratosphérique</td>
</tr>
<tr>
<td>Eutrophisation</td>
</tr>
</tbody>
</table>

3.1.12.3 Discussion

Nous avons sondé le lot avant de démarrer la saisie. Nous n’avons pas trouvé de FDES ou de PEP reliés à nos produits. Par acquis de conscience nous avons renseigné pour les appareils d’éclairage les quantitatifs mais sans y associer d’impact.

L’impact de global de la famille de produit est donc 0.
3.1.13. Appareils élévateurs et autres équipements de transport intérieur

3.1.13.1 Hypothèses

Pour ce lot l’ensemble des ascenseurs et monte-charge ont été renseignés dans la base de données avec une fiche Elodie. Compte tenu de la dimension des ascenseurs du projet et de la plage de dimension couverte par la PEP une seule fiche à suffit à traiter l’intégralité des ascenseurs du projet.
3.1.13.3 Discussion

26% de la consommation d’énergie primaire totale avec 6 ascenseurs et monte-charges !

99% de « destruction de la couche d’ozone stratosphérique »

Je n’ai pas de notion sur l’énergie nécessaire à la fabrication/utilisation d’un ascenseur et loin de moi l’idée de remettre en cause les personnes qui ont constitué la PEP ascenseur mais j’avoue que ce chiffre de 26% me parait abscon.
3.1.14. Equipement de production locale d’électricité

3.1.14.1 Hypothèses
Pour le site présence de panneaux d’ECS solaires en toiture.

3.1.14.2 Résultats

Tableau des impacts environnementaux

<table>
<thead>
<tr>
<th>Impacts environnementaux</th>
<th>Unités</th>
<th>Module Composant</th>
<th>Valeurs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation de ressources énergétiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie primaire totale</td>
<td>kWh / m² SHON</td>
<td>3.72E+03</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Energie renouvelable</td>
<td>kWh / m² SHON</td>
<td>2.54E+02</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Energie non renouvelable</td>
<td>kWh / m² SHON</td>
<td>2.49E+03</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Energie primaire procédé</td>
<td>kWh / m² SHON</td>
<td>2.27E+03</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Épuration des ressources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consommation d'eau totale</td>
<td>L / m² SHON</td>
<td>1.59E+04</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Déchets solides éliminés</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Déchets dangereux</td>
<td>kg / m² SHON</td>
<td>2.68E+00</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Déchets non dangereux</td>
<td>kg / m² SHON</td>
<td>7.03E+02</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Déchets inertes</td>
<td>kg / m² SHON</td>
<td>3.47E+03</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Déchets radioactifs</td>
<td>kg / m² SHON</td>
<td>5.52E+02</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Changement climatique</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidification atmosphérique</td>
<td>kg équivalent CO2 / m² SHON</td>
<td>9.30E+02</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Pollution de l'air</td>
<td>m³ / m² SHON</td>
<td>2.25E+06</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Pollution de l'eau</td>
<td>m³ / m² SHON</td>
<td>3.22E+04</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Formation d’ozone photochimique</td>
<td>kg équivalent ethylène / m² SHON</td>
<td>4.90E+01</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Destruction de la couche d’ozone stratosphérique</td>
<td>kg équivalent CFC R11 / m² SHON</td>
<td>3.75E+02</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>Eutrophisation</td>
<td>kg équivalent PO4(3-) / m² SHON</td>
<td>3.06E+00</td>
<td>0.00%</td>
<td></td>
</tr>
</tbody>
</table>

3.1.14.3 Discussion
Dito famille éclairage. Pas de FDES ou PEP
3.2. Résultats contributeur ENERGIE
3.2.1. Hypothèses

Pour le contributeur énergie nous nous sommes basé :

1. sur le calcul réglementaire de conception de l’opération afin de rester en cohérence avec le reste des données saisies à savoir des données de conception.
2. Pour les postes hors RT2005 liés au bâti nous avons pris en compte les ratios de consommation d’énergie fournis par BNP PI (données issues du suivi de consommation énergétique de bâtiment). Consommations principalement liées au fonctionnement des ascenseurs, à l’éclairage des parkings ainsi que la ventilation des parkings.

Pour les postes hors RT2005 non lié au bâti nous avons pris en compte les ratios de consommation d’énergie fournis par BNP PI (données issues du suivi de consommation énergétique de bâtiment) Consommations principalement liées à des ratios de bureautique, aux équipements RIE ainsi qu’à la production d’ECS dans les sanitaires.
3.2.2. Résultats

<table>
<thead>
<tr>
<th>Consommation de ressources énergétiques</th>
<th>Impact</th>
<th>Unités</th>
<th>Module Énergie</th>
<th>%</th>
<th>Energie primaire totale</th>
<th>5.04%</th>
<th>1.54%</th>
<th>1.17%</th>
<th>2.41%</th>
<th>1.82%</th>
<th>0.83%</th>
<th>8.04%</th>
<th>82.91%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chauffage</td>
<td>Ventilation</td>
<td>ECS</td>
<td>Climatisation - Refroidissement</td>
<td>Eclairage</td>
<td>Auxiliaries</td>
<td>Usages spécifiques liés au bâtiment</td>
<td>Usages spécifiques non liés au bâtiment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie primaire renovable</td>
<td>kWh / m² SHON</td>
<td>2,13E+04</td>
<td>9,4E+02</td>
<td>2,04E+04</td>
<td>2,41%</td>
<td>1,54%</td>
<td>0,89%</td>
<td>1,82%</td>
<td>0,83%</td>
<td>8,07%</td>
<td>83.16%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie non renovable</td>
<td>kWh / m² SHON</td>
<td>1,75E+03</td>
<td>15,64%</td>
<td>18,69%</td>
<td>14,24%</td>
<td>29,26%</td>
<td>22,17%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie primaire procedé</td>
<td>kWh / m² SHON</td>
<td>1,41E+04</td>
<td>0,43%</td>
<td>0,51%</td>
<td>0,29%</td>
<td>0,60%</td>
<td>0,68%</td>
<td>8,53%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie primaire totale</td>
<td>kWh / m² SHON</td>
<td>1,41E+04</td>
<td>0,43%</td>
<td>0,51%</td>
<td>0,29%</td>
<td>0,60%</td>
<td>0,68%</td>
<td>8,53%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie renouvelable</td>
<td>kWh / m² SHON</td>
<td>2,35E+04</td>
<td>2,41%</td>
<td>1,54%</td>
<td>0,89%</td>
<td>1,82%</td>
<td>0,83%</td>
<td>8,07%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie non renouvelable</td>
<td>kWh / m² SHON</td>
<td>1,75E+03</td>
<td>15,64%</td>
<td>18,69%</td>
<td>14,24%</td>
<td>29,26%</td>
<td>22,17%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usages spécifiques liés au bâtiment</td>
<td>kWh / m² SHON</td>
<td>2,41%</td>
<td>1,54%</td>
<td>0,89%</td>
<td>1,82%</td>
<td>0,83%</td>
<td>8,07%</td>
<td>83.16%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.3. Discussion

Sur le poste énergie primaire totale, les usages non liés au bâti représentent plus de 80% du poids total des consommations, le deuxième poste étant les usages spécifiques liés au bâtiment.

Nous avons une belle démonstration de l'écart qui peut exister entre des ratios de consommation réels et un calcul réglementaire avec des hypothèses d'occupations réglementaires.

D'autre part, ces consommations non liées au bâtiment représentent des consommations liées à l'utilisateur et à son mode de fonctionnement... Consommations sur lesquelles nous n'avons aucun facteur d'influence dans l'acte de conception d'un projet. Je conçois qu'au sens de l'analyse du cycle de vie d'un bâtiment les consommations « d'utilisation du bâtiment » soient à prendre en compte dans le périmètre d'évaluation, cependant compte tenu de la différence d'échelle entre les postes de consommation il faudrait à mon sens :

- Soit ne pas prendre en compte les consommations non liées au bâtiment afin de favoriser l'utilisation de l'outil ELODIE en conception de projet une réduction des consommations du bâtiment.
- Soit intégrer pour **les consommations réglementaires** des consommations issues de bâtiment en fonctionnement ou de simulations thermiques dynamiques afin d’approcher les consommations réelles de bâtiment.
3.3. **Résultats contributteur EAU**

3.3.1. **Hypothèses**

Nous avons saisi pour le contributeur eau une seule valeur globale.

Nous avons saisi les consommations d’eau sanitaires sur la base de l’outil CERTIVEA (calculs réalisés dans le cadre de la démarche HQE de l’opération) ainsi que des données de consommation d’eau du RIE.

Pour ces dernières nous nous sommes basé sur les ratios fournis par BNP PI (données issues du suivi de consommation énergétique de bâtiment).
3.3.2. Résultats

Impact sur l’environnement:

<table>
<thead>
<tr>
<th>Impacts environnementaux</th>
<th>Unités</th>
<th>Total Module Eau</th>
<th>Potabilisation</th>
<th>Assainissement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation de ressources énergétiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energie primaire totale (kWh / m² SHON)</td>
<td>3,59E+01</td>
<td>3,59E+01</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Energie renouvelable (kWh / m² SHON)</td>
<td>4,50E+00</td>
<td>4,50E+00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Energie non renouvelable (kWh / m² SHON)</td>
<td>3,14E+01</td>
<td>3,14E+01</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Energie primaire procédé (kWh / m² SHON)</td>
<td>0,00E+00</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Epuisement des ressources</td>
<td>(kg équivalent Antimoine / m² SHON)</td>
<td>5,49E-02</td>
<td>5,49E-02</td>
<td>-</td>
</tr>
<tr>
<td>Consommation d’eau totale (L / m² SHON)</td>
<td>2,95E+04</td>
<td>2,95E+04</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Déchets solides éliminés</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Déchets dangereux (kg / m² SHON)</td>
<td>3,75E+00</td>
<td>3,75E+00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Déchets non dangereux (kg / m² SHON)</td>
<td>2,02E+00</td>
<td>2,02E+00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Déchets inertes (kg / m² SHON)</td>
<td>4,10E-01</td>
<td>4,10E-01</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Déchets radioactifs (kg / m² SHON)</td>
<td>7,96E-01</td>
<td>7,96E-01</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Changement climatique (kg équivalent CO_{2} / m² SHON)</td>
<td>8,07E+00</td>
<td>8,07E+00</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Acidification atmosphérique (kg équivalent SO_{2} / m² SHON)</td>
<td>3,56E-02</td>
<td>3,56E-02</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pollution de l’air (m3 / m² SHON)</td>
<td>6,56E+02</td>
<td>6,56E+02</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pollution de l’eau (m3 / m² SHON)</td>
<td>2,49E+03</td>
<td>2,49E+03</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Formation d’ozone photochimique (kg équivalent éthylène / m² SHON)</td>
<td>1,98E-03</td>
<td>1,98E-03</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Destruction de la couche d’ozone stratosphérique (kg équivalent CFC R11 / m² SHON)</td>
<td>4,20E+07</td>
<td>4,20E+07</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eutrophisation (kg équivalent PO_{4} / m² SHON)</td>
<td>2,53E-03</td>
<td>2,53E-03</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valeur</th>
<th>DES Associée</th>
<th>Facteur de perte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consommation d’eau (m3/an/batiment)</td>
<td>8664</td>
<td>Eau du robinet / Tap water</td>
</tr>
<tr>
<td>Rejets d’eau (m3/an/batiment)</td>
<td>2912,00009</td>
<td>Non défini</td>
</tr>
</tbody>
</table>

3.3.3. Discussion

A la lecture de nos résultats, le contributeur eau ne pèse que 30% des consommations totale de l’immeuble. C’est le module énergie qui dans la synthèse ressort comme étant le contributeur le plus impactant sur le poste consommation d’eau.

J’avoue avoir été surpris par ce résultat m’attendant à ce que ce contributeur représente une majorité des consommations. Avec un peu de recul se résultat s’explique possiblement par la démarche de réduction des consommations d’eau potable effectuée en conception de projet dans le cadre de la démarche HQE minimisant ainsi l’impact du contributeur EAU par rapport à celui de l’énergie.
3.4. Résultats contributeur Chantier

3.4.1. Hypothèses

Nous avons saisi les données à notre disposition dans le module étant entendu que le chantier de notre opération est en cours.

Nous avons renseigné les parties consommation d’énergie et d’eau sur la base de ratios de consommations d’autres chantiers que nous avons confrontés aux premiers relevés du chantier PIXEL.

Concernant le transport, nos terres polluées ont été traitées par un prestataire belge le transport s’effectuant par barge (proximité immédiate du chantier à la Seine).
3.4.1. Discussion

Le peu d’informations saisies rend difficile l’interprétation, cependant le poste transport, du fait des tonnes.Km qu’il représente serait semble-t-il de toute façon resté un des postes les plus importants du chantier.

Le type de données demandées sur les véhicules de chantier notamment (consommations) si elles ne sont pas demandées dans une charte chantier n’est pas accessible. Aujourd’hui seul le référentiel BREEAM inclut cette exigence dans le suivi de chantier.

3.5. Résultats contributeur déplacement

Sans donnée spécifique au projet nous avons à partir des données de l’IFEN reporté les pourcentages de déplacement (voiture seule, transport en commun, deux roues, etc...) aux occupants du bâtiment.
Il semble que le moteur d’extraction des données ne fonctionne pas (à la date de rédaction de ce rapport).

Nous n'avons donc aucun résultat à présenter dans cette section....Espérons que les données auront été exportées dans le module XML.
4. CONCLUSION GENERALE

L’outil ELODIE a vocation à aider à la diminution de l’impact environnemental des bâtiments. C’est aujourd’hui une interface fonctionnelle et rapide d’utilisation pour laquelle la mise à disposition des FDES et des PEP apporte une facilité de saisie notamment dans une démarche HQE. La possibilité de partage de projet permet à une équipe multidisciplinaire d’intervenir sur les différents contributeurs. Malheureusement la disponibilité des informations concernant les impacts environnementaux des matériaux et surtout des équipements rend difficile l’approche. Par disponibilité j’entends à la fois une information en quantité faible (nombre de FDES ou PEP) mais aussi l’hétérogénéité de la donnée. A titre d’exemple la comparaison entre le niveau d’information à disposition concernant les faux plafonds vs les informations concernant les revêtements de sols souple ; Ou encore puisque cela a été un élément de forte interrogation pour nous le nombre de PEP concernant les câbles.

En l’état actuel des données, il me paraît difficile de pouvoir conclure quoi que ce soit des données saisies. En effet la disparité des informations entre FDES générique, FDES produits et/ou PEP ou autres sources de données, donne l’impression de perdre beaucoup de temps pour saisir les quantitatifs et les associer à une donnée d’impact environnemental ; qui au final ressemble plus à une saisie du bâtiment pour le jour les données seront disponibles qu’à une approche comparative d’impacts environnementaux de familles de produits.

Concernant l’interface en elle-même, elle s’est révélée parfois un ennemi de l’intérieur par suite de Bug :

- arrêt de connexion à l’interface,
- impossibilité de modifier des paramètres,
- association FDES / quantitatif ne générant aucun calcul d’impact que ce soit dans l’interface ou dans l’extraction Excel
- Message nous annonçant que les FDES que nous avions sélectionné n’étaient plus disponible dans la base....

Où comme cela est encore le cas au moment de la rédaction de ce rapport par la non prise en compte de certains paramètres (le contributeur déplacement n’est pas exportable sur Excel !).

D’autre part comme nous l’avons noté pour le contributeur ENERGIE certains postes de consommation (consommation d’énergie non lié au bâti) qui entre dans le périmètre de l’ACV aujourd’hui sont des postes qui représentent 80% de l’impact du contributeur et sur lequel nous n’avons aucun facteur d’influence dans la conception puisqu’ils sont liés totalement à l’utilisateur.